organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl [(benzylazaniumyl)(2-hydroxyphenyl)methyl]phosphonate

Xiangdong Zhang,* Rui Zhang, Chunhua Ge and Xiaoyan Zhang

College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China Correspondence e-mail: xdzhang@lnu.edu.cn

Received 21 June 2011; accepted 3 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.121; data-to-parameter ratio = 14.9.

The title compound, $C_{16}H_{20}NO_4P$, crystallizes as a zwitterion. In the molecule, the two aromatic rings form a dihedral angle of 55.2 (1)°. In the crystal, intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds link the molecules into columns propagating in [010].

Related literature

For related structures, see: Zhang et al. (2005, 2007).

Experimental

b = 6.0927 (7) Å
c = 22.333 (3) Å
$\beta = 124.464 \ (2)^{\circ}$
V = 3149.0 (6) Å ³

Z = 8Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	8453 measured reflections
diffractometer	3104 independent reflections
Absorption correction: multi-scan	1918 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.057$
$T_{\min} = 0.955, \ T_{\max} = 0.969$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ H atoms treated by a mixture of
independent and constrained
refinementS = 1.00refinement3104 reflections $\Delta \rho_{max} = 0.30 \text{ e Å}^{-3}$
 $\Delta \rho_{min} = -0.28 \text{ e Å}^{-3}$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1NA\cdotsO1^{i}$	0.97 (3)	1.77 (3)	2.738 (3)	179 (2)
$N1 - H1NB \cdots O4$	0.86 (3)	2.50 (3)	2.982 (3)	116 (2)
$N1 - H1NB \cdot \cdot \cdot O2^{ii}$	0.86 (3)	2.08 (3)	2.915 (3)	164 (2)
$O4-H4A\cdots O1$	0.82	1.94	2.738 (3)	164
$O4-H4A\cdots O2^{ii}$	0.82	2.58	2.925 (3)	107

T = 296 K

 $0.28 \times 0.25 \times 0.19 \text{ mm}$

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2009) and *WinGX* (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (No. 20971062/B010303), the Project for Provincial Key Laboratory of Liaoning Province, China (grant No. 2008S104).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5124).

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhang, X., Ge, C., Zhang, X. & Liu, Q. (2007). Acta Cryst. E63, 04778.

Zhang, X.-D., Yu, Z., Ma, Y.-C., Zhao, Z. & Zhu, M.-L. (2005). Acta Cryst. E61, 02952–02954.

supplementary materials

Acta Cryst. (2011). E67, o2006 [doi:10.1107/S1600536811026444]

Ethyl [(benzylazaniumyl)(2-hydroxyphenyl)methyl]phosphonate

X. Zhang, R. Zhang, C. Ge and X. Zhang

Comment

As a continuation of our structural study of (2-hydroxyphenyl)methylphosphonate derivatives (Zhang *et al.*, 2005; 2007), we present here the crystal structure of the title compound, (I), which crystallizes as a zwitterion.

In the title molecule (Fig. 1), two aromatic rings form a dihedral angle of 55.2 (1)°. In the crystal structure, intermolecular N—H…O and O—H…O hydrogen bonds (Table 1) link molecules into columns propagated in [010].

Experimental

The title compound was synthesized following the reported method (Zhang *et al.*, 2005). Diethyl phosphonate (0.02 mol) was dissolved in 80 ml of ethanol. The solution was added dropwise to a mixture of salicylaldehyde (0.02 mol) and benzylamine (0.02 mol) in 30 ml e thanol which was refluxed for 4 h. The resulting solution was refluxed until solid appeared. The product was filtered and washed with ethanol. Yield 43%.

Refinement

H atoms attached to C atoms were positioned geometrically and refined using a riding model, with Csp^3 —H = 0.96–0.98 Å or Csp^2 —H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atom attached to O atom was O—H = 0.82 Å and with $U_{iso}(H)=1.5U_{eq}(O)$. H atoms attached to N atom were located by difference Fourier synthesis with the range 0.86–0.97 Å and refined isotropically.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Ethyl [(benzylazaniumyl)(2-hydroxyphenyl)methyl]phosphonate

Crystal data

 $C_{16}H_{20}NO_4P$ $M_r = 321.30$ Monoclinic, C2/cHall symbol: -C 2yc F(000) = 1360 $D_x = 1.355 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 187 reflections

supplementary materials

a = 28.069 (3) Å b = 6.0927 (7) Å c = 22.333 (3) Å $\beta = 124.464 (2)^{\circ}$ $V = 3149.0 (6) \text{ Å}^{3}$ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer	3104 independent reflections
Radiation source: fine-focus sealed tube	1918 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.057$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -34 \rightarrow 33$
$T_{\min} = 0.955, T_{\max} = 0.969$	$k = -7 \rightarrow 7$
8453 measured reflections	$l = -19 \rightarrow 27$

 $\theta = 2.6-22.5^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$

Block, colourless

 $0.28\times0.25\times0.19~mm$

T = 296 K

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.121$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0504P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3104 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
209 parameters	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\text{min}} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
P1	0.17738 (3)	0.87761 (11)	0.22830 (4)	0.0315 (2)
O3	0.11541 (7)	0.8149 (3)	0.20942 (10)	0.0399 (5)
N1	0.23047 (10)	0.8251 (4)	0.15689 (12)	0.0303 (5)
02	0.22470 (8)	0.7684 (3)	0.29547 (9)	0.0393 (5)
C18	0.17490 (11)	0.7697 (4)	0.14969 (13)	0.0301 (6)
H18	0.1735	0.6094	0.1520	0.036*
C8	0.12149 (11)	0.8387 (4)	0.07710 (13)	0.0315 (6)
01	0.17840 (8)	1.1221 (3)	0.22305 (10)	0.0376 (5)
O4	0.15309 (10)	1.2130 (3)	0.08789 (11)	0.0586 (6)
H4A	0.1652	1.2047	0.1309	0.088*
C2	0.28397 (12)	0.7998 (5)	0.09779 (14)	0.0378 (7)
C10	0.06502 (13)	1.1018 (5)	-0.01849 (15)	0.0448 (7)
H10	0.0610	1.2415	-0.0376	0.054*
C1	0.23072 (12)	0.7379 (5)	0.09411 (15)	0.0424 (7)
H1A	0.2277	0.5791	0.0932	0.051*
H1B	0.1971	0.7936	0.0492	0.051*
C13	0.07828 (12)	0.6856 (5)	0.03567 (15)	0.0399 (7)
H13	0.0826	0.5438	0.0535	0.048*
С9	0.11301 (12)	1.0518 (4)	0.04989 (15)	0.0375 (7)
C11	0.02300 (13)	0.9456 (5)	-0.05861 (16)	0.0474 (8)
H11	-0.0095	0.9812	-0.1042	0.057*
C7	0.32831 (13)	0.6516 (5)	0.12183 (16)	0.0505 (8)
H7	0.3259	0.5144	0.1382	0.061*
C12	0.02899 (12)	0.7382 (5)	-0.03144 (16)	0.0451 (8)
H12	0.0002	0.6339	-0.0578	0.054*
C5	0.38007 (15)	0.9030 (7)	0.09799 (19)	0.0648 (10)
Н5	0.4122	0.9375	0.0978	0.078*
C3	0.28884 (14)	1.0027 (5)	0.07376 (17)	0.0511 (8)
H3A	0.2595	1.1056	0.0572	0.061*
C14	0.10333 (14)	0.5962 (5)	0.2229 (2)	0.0629 (10)
H14A	0.1335	0.5506	0.2718	0.075*
H14B	0.1024	0.4934	0.1890	0.075*
C15	0.04702 (15)	0.5964 (7)	0.2139 (2)	0.0851 (13)
H15A	0.0485	0.6956	0.2483	0.128*
H15B	0.0386	0.4511	0.2220	0.128*
H15C	0.0173	0.6426	0.1655	0.128*
C4	0.33690 (16)	1.0534 (6)	0.07413 (19)	0.0635 (10)
H4	0.3399	1.1903	0.0581	0.076*
C6	0.37635 (15)	0.7037 (6)	0.12200 (19)	0.0648 (10)
Н6	0.4060	0.6021	0.1386	0.078*
H1NA	0.2628 (13)	0.754 (4)	0.1997 (16)	0.050 (9)*
H1NB	0.2378 (11)	0.963 (4)	0.1627 (14)	0.033 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0278 (4)	0.0342 (4)	0.0320 (4)	-0.0001 (3)	0.0167 (3)	-0.0020 (3)
O3	0.0304 (11)	0.0432 (12)	0.0473 (12)	-0.0015 (9)	0.0227 (10)	0.0046 (9)
N1	0.0311 (14)	0.0301 (14)	0.0293 (13)	0.0002 (11)	0.0169 (12)	-0.0005 (11)
O2	0.0338 (11)	0.0488 (12)	0.0306 (10)	0.0068 (9)	0.0155 (9)	0.0055 (9)
C18	0.0285 (15)	0.0256 (14)	0.0321 (15)	0.0010 (11)	0.0147 (13)	0.0016 (11)
C8	0.0306 (15)	0.0350 (16)	0.0265 (14)	0.0032 (12)	0.0147 (12)	-0.0019 (12)
01	0.0369 (11)	0.0333 (11)	0.0418 (11)	-0.0045 (9)	0.0218 (10)	-0.0078 (9)
O4	0.0591 (15)	0.0372 (12)	0.0452 (13)	-0.0073 (11)	0.0090 (12)	0.0035 (10)
C2	0.0379 (17)	0.0472 (18)	0.0300 (15)	-0.0016 (14)	0.0202 (14)	-0.0071 (13)
C10	0.0451 (19)	0.0437 (18)	0.0351 (16)	0.0101 (15)	0.0164 (15)	0.0067 (14)
C1	0.0429 (18)	0.0532 (19)	0.0337 (16)	-0.0061 (14)	0.0232 (15)	-0.0111 (14)
C13	0.0319 (17)	0.0465 (18)	0.0390 (16)	-0.0002 (14)	0.0187 (14)	-0.0035 (14)
C9	0.0333 (17)	0.0368 (17)	0.0346 (15)	0.0021 (13)	0.0145 (13)	-0.0016 (13)
C11	0.0347 (18)	0.066 (2)	0.0312 (16)	0.0105 (16)	0.0126 (14)	-0.0002 (16)
C7	0.058 (2)	0.055 (2)	0.0491 (19)	0.0096 (17)	0.0372 (18)	0.0018 (16)
C12	0.0272 (17)	0.060 (2)	0.0375 (17)	-0.0078 (14)	0.0117 (14)	-0.0112 (15)
C5	0.054 (2)	0.096 (3)	0.061 (2)	-0.021 (2)	0.043 (2)	-0.016 (2)
C3	0.057 (2)	0.0476 (19)	0.0494 (19)	0.0017 (16)	0.0301 (17)	-0.0012 (16)
C14	0.054 (2)	0.068 (2)	0.064 (2)	-0.0147 (18)	0.0314 (19)	0.0084 (19)
C15	0.046 (2)	0.119 (3)	0.081 (3)	-0.016 (2)	0.031 (2)	0.024 (2)
C4	0.078 (3)	0.068 (2)	0.062 (2)	-0.020 (2)	0.049 (2)	-0.0062 (19)
C6	0.054 (2)	0.087 (3)	0.066 (2)	0.016 (2)	0.042 (2)	-0.001 (2)

Geometric parameters (Å, °)

1.4841 (18)	C1—H1B	0.9700
1.4961 (18)	C13—C12	1.384 (4)
1.5874 (18)	С13—Н13	0.9300
1.839 (3)	C11—C12	1.370 (4)
1.448 (3)	C11—H11	0.9300
1.503 (3)	C7—C6	1.383 (4)
1.513 (3)	С7—Н7	0.9300
0.97 (3)	С12—Н12	0.9300
0.86 (3)	C5—C6	1.355 (5)
1.517 (3)	C5—C4	1.364 (5)
0.9800	С5—Н5	0.9300
1.388 (3)	C3—C4	1.380 (4)
1.396 (4)	С3—НЗА	0.9300
1.367 (3)	C14—C15	1.477 (4)
0.8200	C14—H14A	0.9700
1.377 (4)	C14—H14B	0.9700
1.384 (4)	C15—H15A	0.9600
1.498 (4)	C15—H15B	0.9600
1.380 (4)	C15—H15C	0.9600
1.382 (4)	C4—H4	0.9300
	1.4841 (18) 1.4961 (18) 1.5874 (18) 1.839 (3) 1.448 (3) 1.503 (3) 1.513 (3) 0.97 (3) 0.86 (3) 1.517 (3) 0.9800 1.388 (3) 1.396 (4) 1.367 (3) 0.8200 1.377 (4) 1.384 (4) 1.498 (4) 1.380 (4) 1.382 (4)	1.4841 (18) $C1-H1B$ $1.4961 (18)$ $C13-C12$ $1.5874 (18)$ $C13-H13$ $1.839 (3)$ $C11-C12$ $1.448 (3)$ $C11-H11$ $1.503 (3)$ $C7-C6$ $1.513 (3)$ $C7-H7$ $0.97 (3)$ $C12-H12$ $0.86 (3)$ $C5-C6$ $1.517 (3)$ $C5-C4$ 0.9800 $C5-H5$ $1.388 (3)$ $C3-C4$ $1.396 (4)$ $C3-H3A$ $1.367 (3)$ $C14-C15$ 0.8200 $C14-H14B$ $1.377 (4)$ $C14-H14B$ $1.384 (4)$ $C15-H15B$ $1.380 (4)$ $C15-H15C$ $1.382 (4)$ $C4-H4$

supplementary materials

C10—H10	0.9300	С6—Н6	0.9300
C1—H1A	0.9700		
O2—P1—O1	118.69 (11)	C8—C13—H13	119.1
O2—P1—O3	112.33 (10)	O4—C9—C10	118.2 (3)
O1—P1—O3	106.60 (10)	O4—C9—C8	121.3 (2)
O2—P1—C18	109.48 (11)	C10C9C8	120.4 (3)
O1—P1—C18	105.86 (11)	C12-C11-C10	120.2 (3)
O3—P1—C18	102.51 (11)	C12—C11—H11	119.9
C14—O3—P1	121.11 (18)	C10-C11-H11	119.9
C1—N1—C18	111.8 (2)	C2—C7—C6	121.0 (3)
C1—N1—H1NA	105.4 (16)	С2—С7—Н7	119.5
C18—N1—H1NA	109.7 (16)	С6—С7—Н7	119.5
C1—N1—H1NB	111.2 (17)	C11—C12—C13	119.3 (3)
C18—N1—H1NB	112.3 (17)	C11—C12—H12	120.3
H1NA—N1—H1NB	106 (2)	С13—С12—Н12	120.3
N1—C18—C8	112.8 (2)	C6—C5—C4	120.4 (3)
N1-C18-P1	109.82 (16)	С6—С5—Н5	119.8
C8—C18—P1	113.68 (17)	С4—С5—Н5	119.8
N1—C18—H18	106.7	C4—C3—C2	120.6 (3)
C8—C18—H18	106.7	С4—С3—НЗА	119.7
P1-C18-H18	106.7	С2—С3—НЗА	119.7
C13—C8—C9	117.7 (2)	O3—C14—C15	109.2 (3)
C13—C8—C18	119.2 (2)	O3—C14—H14A	109.8
C9—C8—C18	123.0 (2)	C15—C14—H14A	109.8
C9—O4—H4A	109.5	O3—C14—H14B	109.8
C7—C2—C3	118.1 (3)	C15-C14-H14B	109.8
C7—C2—C1	120.6 (3)	H14A—C14—H14B	108.3
C3—C2—C1	121.2 (3)	C14—C15—H15A	109.5
C11—C10—C9	120.4 (3)	C14—C15—H15B	109.5
С11—С10—Н10	119.8	H15A—C15—H15B	109.5
С9—С10—Н10	119.8	C14—C15—H15C	109.5
C2-C1-N1	113.0 (2)	H15A—C15—H15C	109.5
C2—C1—H1A	109.0	H15B—C15—H15C	109.5
N1—C1—H1A	109.0	C5—C4—C3	120.1 (3)
C2—C1—H1B	109.0	С5—С4—Н4	120.0
N1—C1—H1B	109.0	С3—С4—Н4	120.0
H1A—C1—H1B	107.8	C5—C6—C7	119.8 (3)
C12—C13—C8	121.8 (3)	С5—С6—Н6	120.1
C12—C13—H13	119.1	С7—С6—Н6	120.1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
N1—H1NA…O1 ⁱ	0.97 (3)	1.77 (3)	2.738 (3)	179 (2)
N1—H1NB···O4	0.86 (3)	2.50 (3)	2.982 (3)	116 (2)
N1—H1NB···O2 ⁱⁱ	0.86 (3)	2.08 (3)	2.915 (3)	164 (2)
04—H4A…O1	0.82	1.94	2.738 (3)	164
O4—H4A···O2 ⁱⁱ	0.82	2.58	2.925 (3)	107

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.

Fig. 1

